Section 1

Amy “Amy Bousamra” Littlefield-Bousamra

Robotics and the World of Bugs

Robots. The word can conjure up all sorts of science fiction images. These robot images can be derived from such characters as Tik-Tok from Frank Baum’s Oz series, Gnut  from Harry Bate’s Farewell to the Master, or film’s C-3P0 and R2D2 from the blockbuster hit, Star Wars.

What about real robots? In recent times scientists are thinking small and looking to mother nature for answers. The current trend, particularly in the field of robotics, examines the extraordinary life of insects. Here are a few recent projects making headlines today:

1. The Robobees: The biggest buzz on robotic insects goes to Harvard University and their invention of Robobees. This robotic invention has received numerous amounts of press. The amount of press is not surprising though as for such a small (only half a gram) robot with ambitious capabilities. According to researchers at Harvard these tiny robots strive to achieve the following:

  1. pollinating a field of crops;
  2. search and rescue (e.g., in the aftermath of a natural disaster);
  3. hazardous environment exploration;
  4. military surveillance;
  5. high resolution weather and climate mapping; and
  6. traffic monitoring.

Interesting fact: In order to create robobees, a new technique in robotics called pop-up fabrication of microelectromechanics (MEMS) of robots was developed.  Prior to pop-up fabrication, robobees were manually assembled one by one. This technique was inspired from origami and children’s pop-up books. Like a pop-up book, the robot emerges from an assembly scaffold when popped upward into a three dimensional figure. The motion and calculated rotation that occurs during the pop-up process helps create folds (joints) in the robot. This technique could lead to the mass production of other electromechanical machines.

A detailed video on how this technique is applied to the creation of a robo-bee can be viewed at:

2. Robotic Ants:  The New Jersey Institute of Technology’s Swarm Lab continues to make advances with the development of robotic ants.  During this project, scientists engineered ten robotic ants. The study uncovered the ants’ navigational behavior in a colony.

Interesting fact: The idea for this invention came from researching ants and trying to mimic the pheromone trails they leave with the use of light. The ants are equipped with light sensors used to detect the trail of light left behind from their previous path of movement. The information collected from this project could lead to improving transportation in the future. A demonstration of this robotic ants can be viewed at:

3. The Robot Dragonfly:

The Robot Dragonfly would make a perfect a gadget for 007. This robotic project began with graduate students from Georgia Tech University. It was funded by the US Air Force and has now formed into the company, TechJect.

Interesting fact: This little bug has spy capabilities, which can provide information as it hovers over its target. It is also the first small robot that can produce aerial photography and is tiny enough to fit in a person’s pocket. The development of this robot dragonfly is one to keep an eye on for the future.


Davis , S. (2013, May 02). Robobees take first flight.

Retrieved from Dvorsky, G. (2013, March 29). Engineers build the first robot ant society.

Retrieved from Flynn, S. (2012, December 26). Big buzz surrounds micro-robots.

Retrieved from Harvard School of Engineering. (n.d.). Robobees a convergence of body, brain and colony. Retrieved from

Hopkinson, T. (2012, April 19). Synapses on fire. Retrieved from

McMillan, G. (2013, April 03). Scientists build robotic ant colony that learns from each other. Retrieved from

Ratti , J. (2012). Techject company. Retrieved from

Section 2

Jodi Heller

OK Go’s Rube Goldberg Machine

Some of you might be familiar with the band OK Go because of their over-night sensation “Here it goes Again.” For those of you that are not so familiar, they became widely popular for creating a securitized sensation with the use of treadmills in their music video back in the early 2000’s. This single-shot home video put this band on the map, making it possible for them to create yet another popular music video, “This too shall pass.”

OK Go wanted to create another masterpiece staying true to what made them popular in the first place. They wanted to recreate that dance they had with their machines. To help them recreate their vision they hired a team of people from Syyn Labs – an LA based company – that has been known for their surprising tech projects. The concept behind the video was a large-scale version of a Rube Goldberg Machine. Think of the board game Mouse Trap, where this large complicated machine is built to complete a small task.

Before going in to this project there where some demands that the band had for this machine. One being, that there would be no “magic.” It had to come off as readable or that a mother could understand what was going on. They wanted it to make great use of space, so that’s what they did. The warehouse that was rented was used fully and even had a hole dug so that the camera could be placed. Also the machine had to flow with the music as it played, making sure to hit certain beats along the way. Doing this would also able them to provide live audio of the contraption into the song itself. As simple as all this sounds it’s by no means a simple task. Everything had to be perfect! The temperature needed to be controlled and there was dusting done regularly. They found that the smaller objects were harder to control, so they left them in the beginning that way if something went awry they wouldn’t have to reset the whole machine all over again.

There were eighty-nine interactions that all had to be executed perfectly for this one-take shot. If something missed or a marble flew off in the wrong direction they would have to reset everything. The reset alone took over an hour to set up and there where over eight five takes with only three of those retakes complete. You can get the idea how intense it was to make sure everything was perfect.

The group learned a lot of things along the way, mostly, to be patient. With over a hundred trips to Home Depot under their belt, ten TV’s destroyed and two pianos smashed to oblivion they finally completed their version of a Rube Goldberg Machine. Even though I am not the biggest fan of this bands music I do look forward to see what they will come up with next and it all really makes me miss those days when MTV really stood for music videos.

Tweney, D. (March 2010). How OK Go’s amazing Rube Goldberg Machine was built. Retrieved from

n.n. (April 2010). Adam Sadowsky engineers a viral music video. [Video file]. Retrieved from


Benjamin Thompson

          The Kraken, 4,177 feet long, 65 miles per hour, 7 inversions and a 144 foot drop. A steel roller coaster located at Sea Word Orlando. This is not a ride for the faint of heart. But how does it work? What goes into making this thrill ride even possible? Physics, and a whole lot of it. Beginning with the lift, gaining potential energy to push you in to the next maneuver… vertical loop, a twist, or a drop, all requires physics to build these extreme thrill experiences. Let me walk you through what it takes to make this ride a possibility.

As you ascend the lift, you are generating potential energy. At the top of the lift you have gained the energy you need in order to complete the first maneuver. But the tricky part is what is too much? And what is not enough? And all of that is dependent upon what is next.

Oh it’s a drop that leads into a full loop! You scream as you race down 144 feet going directly into a large vertical loop, and for that split second your whole world is turned completely upside down. During the drop you gather kinetic energy, energy that is put into play as you move right into the next maneuver. Enough energy to make sure that can complete a full loop with out sliding back the way you came. How is this possible? What would have happened if you had been going too fast? Or not fast enough?

Roller coasters utilize the principle of gravity and inertia as their primary power source to power them through the entire length of track. As we know gravity pulls us down and when you have the kinetic energy and inertia behind you, you are able to pull up against gravity. Once the RV hits the “gravity zone” you have an object that follows Newton’s 1st law, an object in motion tends to stay in motion. The object in this case is the ride vehicle and designers utilize the tracks to channel and direct this motion.

If we were to do this we would need to factor in the height of the lift, the mass and weight of the RV, the resistance from the track the height and the angle of the loop. Engineers and ride designers have spent countless hours running scenarios and creating simulations, punching the numbers to make sure that it works perfectly. Sounds easy right?

So, who gets to design these gravity defying machines? What would you need to do to become a roller coaster engineer and designer? As you can imagine, roller coaster engineer positions are few and far between. In order to be considered for a position with Bolliger & Mabillard (the company that designed the Kraken) you must have a Masters degree in structural, mechanical or electrical engineering. This is true for most companies; in short you need, the education, the experience and the connections, not an easy list. But with the many different companies that design roller coasters the requirements and responsibilities vary on each project so its important to make sure your prepared for anything.

Harris, T. (n.d.). How Roller Coasters Work. How Stuff Works . Retrieved July 28, 2013, from

Kraken – SeaWorld Orlando (Orlando, Florida, USA). (n.d.). Roller Coaster DataBase. Retrieved July 28, 2013, from

Roller-Coaster Designer What they do . (n.d.). College Foundation of North Carolina . Retrieved July 28, 2013, from

Magloff, L. (n.d.). What Is Needed to Be a Roller Coaster Designer? . eHow. Retrieved July 28, 2013, from

Kraken Front Seat on-ride HD POV Seaworld Orlando. (2010, November 20). YouTube . Retrieved July 28, 2013, from

Section 3